p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.59D4, C4⋊D4⋊7C4, C22⋊Q8⋊7C4, C42⋊C2⋊4C4, (C22×C4).127D4, C23.506(C2×D4), C22.SD16⋊1C2, C22.18(C4○D8), C23.34D4⋊5C2, C23.31D4⋊1C2, C22.7(C23⋊C4), C4⋊D4.140C22, C22⋊C8.165C22, C23.55(C22⋊C4), (C23×C4).212C22, C22.19C24.4C2, (C22×C4).638C23, C22⋊Q8.145C22, C2.C42.6C22, C2.21(C42⋊C22), C2.10(C23.24D4), (C2×C4○D4)⋊4C4, C4⋊C4.16(C2×C4), (C2×C22⋊C8)⋊7C2, (C2×D4).13(C2×C4), C2.21(C2×C23⋊C4), (C2×Q8).13(C2×C4), (C2×C4).1162(C2×D4), (C22×C4).203(C2×C4), (C2×C4).128(C22×C4), (C2×C4).174(C22⋊C4), C22.192(C2×C22⋊C4), SmallGroup(128,248)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.59D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, faf-1=ad=da, eae-1=acd, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bde3 >
Subgroups: 340 in 142 conjugacy classes, 46 normal (34 characteristic)
C1, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2.C42, C2.C42, C22⋊C8, C22⋊C8, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22×C8, C23×C4, C2×C4○D4, C22.SD16, C23.31D4, C23.34D4, C2×C22⋊C8, C22.19C24, C24.59D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C4○D8, C2×C23⋊C4, C23.24D4, C42⋊C22, C24.59D4
(1 22)(2 9)(3 24)(4 11)(5 18)(6 13)(7 20)(8 15)(10 25)(12 27)(14 29)(16 31)(17 26)(19 28)(21 30)(23 32)
(2 32)(4 26)(6 28)(8 30)(9 23)(11 17)(13 19)(15 21)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 30 32 8)(3 29)(4 6 26 28)(7 25)(9 17 23 11)(10 24)(12 16)(13 21 19 15)(14 20)(18 22)
G:=sub<Sym(32)| (1,22)(2,9)(3,24)(4,11)(5,18)(6,13)(7,20)(8,15)(10,25)(12,27)(14,29)(16,31)(17,26)(19,28)(21,30)(23,32), (2,32)(4,26)(6,28)(8,30)(9,23)(11,17)(13,19)(15,21), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,30,32,8)(3,29)(4,6,26,28)(7,25)(9,17,23,11)(10,24)(12,16)(13,21,19,15)(14,20)(18,22)>;
G:=Group( (1,22)(2,9)(3,24)(4,11)(5,18)(6,13)(7,20)(8,15)(10,25)(12,27)(14,29)(16,31)(17,26)(19,28)(21,30)(23,32), (2,32)(4,26)(6,28)(8,30)(9,23)(11,17)(13,19)(15,21), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,30,32,8)(3,29)(4,6,26,28)(7,25)(9,17,23,11)(10,24)(12,16)(13,21,19,15)(14,20)(18,22) );
G=PermutationGroup([[(1,22),(2,9),(3,24),(4,11),(5,18),(6,13),(7,20),(8,15),(10,25),(12,27),(14,29),(16,31),(17,26),(19,28),(21,30),(23,32)], [(2,32),(4,26),(6,28),(8,30),(9,23),(11,17),(13,19),(15,21)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,30,32,8),(3,29),(4,6,26,28),(7,25),(9,17,23,11),(10,24),(12,16),(13,21,19,15),(14,20),(18,22)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4F | 4G | 4H | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 2 | ··· | 2 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D4 | C4○D8 | C23⋊C4 | C42⋊C22 |
kernel | C24.59D4 | C22.SD16 | C23.31D4 | C23.34D4 | C2×C22⋊C8 | C22.19C24 | C42⋊C2 | C4⋊D4 | C22⋊Q8 | C2×C4○D4 | C22×C4 | C24 | C22 | C22 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.59D4 ►in GL6(𝔽17)
1 | 8 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 15 | 0 | 16 | 0 |
0 | 0 | 15 | 16 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 15 | 0 | 16 | 0 |
0 | 0 | 15 | 16 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
15 | 7 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 2 | 2 | 4 |
0 | 0 | 6 | 13 | 14 | 9 |
0 | 0 | 3 | 15 | 15 | 13 |
0 | 0 | 13 | 9 | 8 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 13 | 16 | 0 | 0 |
0 | 0 | 2 | 1 | 1 | 2 |
0 | 0 | 16 | 0 | 16 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,8,16,0,0,0,0,0,0,1,0,15,15,0,0,0,1,0,16,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,15,15,0,0,0,1,0,16,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,0,0,0,0,0,7,9,0,0,0,0,0,0,6,6,3,13,0,0,2,13,15,9,0,0,2,14,15,8,0,0,4,9,13,0],[13,1,0,0,0,0,0,4,0,0,0,0,0,0,1,13,2,16,0,0,0,16,1,0,0,0,0,0,1,16,0,0,0,0,2,16] >;
C24.59D4 in GAP, Magma, Sage, TeX
C_2^4._{59}D_4
% in TeX
G:=Group("C2^4.59D4");
// GroupNames label
G:=SmallGroup(128,248);
// by ID
G=gap.SmallGroup(128,248);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1430,387,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,e*a*e^-1=a*c*d,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^3>;
// generators/relations